Tak powstaje ucho z drukarki 3D

Tak powstaje ucho z drukarki 3D

Tak powstaje ucho z drukarki 3D
Łukasz Michalik
23.05.2016 08:42, aktualizacja: 10.03.2022 09:43

Fabryki narządów przestają być fikcją. Zamiast protez, współczesna medycyna potrafi już zaoferować żywe, działające fragmenty tkanek, a nawet całe narządy. W jaki sposób powstają?

Krok 1: wybór sprzętu

Do drukowania służy specjalna drukarka, działająca podobnie jak popularne drukarki 3D. Różnica polega m.in. na wykorzystanym materiale: głowica drukarki umożliwia wykorzystanie zawiesiny zawierająca komórki i spajającego je hydrożelu, kolagenu albo czynnika wzrostu.

Krok 2: dobieramy kształt

Przed laty eksperymentowano z pokrywaniem żywymi komórkami uformowanego wcześniej stelażu. Skuteczniejsza okazała się inna metoda: jednocześnie drukuje się żywe komórki i stelaż, który pozwala na uzyskanie pożądanego kształtu. Stelaż może zostać z czasem rozłożony w procesie trawienia białek albo pozostać, jako stały element projektowanej tkanki.

Obraz

Krok 3: dbamy o odżywianie!

Kluczowe dla powodzenia całej operacji jest zapewnienie komórkom odżywiania, zapewnianego przez krew. Dlatego łatwo jest wydrukować płaską warstwę żywych komórek, ale trudno przestrzenną bryłę jakiegoś narządu.

Ucho i fragment kości z drukarki 3D
Ucho i fragment kości z drukarki 3D

Kluczem do sukcesu jest w tym przypadku zastosowanie zawiesiny o składzie, pozwalającym komórkom na przeżycie, zanim wydrukowana część przyjmie się w ciele biorcy i będzie przez niego odżywiana.

Szczur z wszczepionym pod skórę uchem
Szczur z wszczepionym pod skórę uchem

Krok 4: wszczepiamy!

Wydrukowany narząd może być wszczepiony np. zwierzęciu, które zapewnia odżywianie dla tworzącej go tkanki w czasie potrzebnym do rozmnożenia się komórek i wzrostu narządu. Inną możliwością jest wszczepienie narządu - np. ucha - pod skórę przyszłego użytkownika, który "hoduje" je aż do czasu właściwego przeszczepu.

Krok 5: tworzymy żywy, sztuczny narząd

Przełomem, którym niedawno pochwalili się badacze z Wake Forest Institute, okazała się technologia o nazwie Zintegrowany Systemem Drukujący Organy i Tkanki (ITOP). Na czym polega jej innowacyjność?

Chodzi o to, że naukowcom udało się zbudować drukarkę, drukującą jednocześnie z kilku materiałów: polimerów, tworzących szkielet narządu, żywych komórek i tymczasowej osłony, chroniącej organ do czasu, aż zrośnie się z organizmem, do którego został przeszczepiony.

Ta nowoczesna drukarka służąca do wydruku tkanek i organów to niebywały postęp w tworzeniu tkanek zastępczych dla pacjentów. Dzięki niej można wyprodukować stabilną tkankę ludzką w odpowiednim rozmiarze i kształcie. W miarę rozwoju tej technologii, możliwe będzie wydrukowanie żywej tkanki i organów potrzebnych do przeszczepów.

To ważna zmiana – wcześniej udawało się wydrukować najwyżej fragmenty mięśni, kości albo naczyń krwionośnych.

Wydrukowano w ten sposób m.in. niewielkie ucho, odpowiadające wielkością uchu dziecka. Wszczepiono je następnie w ciało użytego do eksperymentu szczura, gdzie po około dwóch miesiącach wydruk nie tylko zachował swoją formę, ale obrósł również siecią naczyń krwionośnych, odżywiających żywą tkankę.

Obraz

Krok 6: poprawiamy sobie słuch!

Opisany wyżej przykład, w połączeniu z elektronicznym implantem, który po podłączeniu do układu nerwowego zapewnia zdolność słyszenia, oznacza, że mamy już technologię, pozwalającą na stworzenie działającego, żywego narządu, zdolnego do zastąpienia fragmentu ludzkiego ciała.

Źródło artykułu:WP Gadżetomania
Oceń jakość naszego artykułuTwoja opinia pozwala nam tworzyć lepsze treści.
Wybrane dla Ciebie
Komentarze (4)