„Egzotyczny” nadprzewodnik i cząstki, których nikt nie widział – podwaliny pod komputery kwantowe(?)

Po odkryciu, którego dokonali uczeni z Princeton, można sądzić, że komputery kwantowe oparte będą na nadprzewodnikach z „rozdwojoną osobowością” i na cząstkach o zerowej masie i równie zerowym ładunku.

Niewidzialne staje się widzialne
Niewidzialne staje się widzialne
Katarzyna Kieś

Po odkryciu, którego dokonali uczeni z Princeton, można sądzić, że komputery kwantowe oparte będą na nadprzewodnikach z „rozdwojoną osobowością” i na cząstkach o zerowej masie i równie zerowym ładunku.

W maju pisałam o pierwszym nadprzewodniku topologicznym wytworzonym na Uniwersytecie w Princeton. Dziś ciąg dalszy historii, która może stać się początkiem procesu zastępowania tradycyjnych komputerów maszynami kwantowymi. Zespół odkrywców z Princeton opublikował 1 listopada wynik swoich prac na łamach „Nature Physics”.

Okazuje się, że „przyłapanie” cząstek Majorany może być bliższe, niż sądzimy. Fizycy idą w swoich spekulacjach jeszcze dalej: choć cząstek Majorany jeszcze nikt nigdy nie widział, uczeni przymierzają się już do manipulowania tymi tajemniczymi molekułami.

Istnienie cząstek Majorany – fermionów, które są same dla siebie antycząstkami, przewidziano już ok. 70 lat temu. I pomimo usilnych starań nikomu nie udało się dotąd zobaczyć tych przedziwnych molekuł. Ba, żeby tylko zobaczyć: nikt nie wie, gdzie ich szukać! Przypuszczalnie mogą znajdować się w miejscu styku topologicznego nadprzewodnika z topologicznym izolatorem. Ale czy gdzieś jeszcze?

I tu dochodzimy do odkrycia dokonanego na Uniwersytecie w Princeton. Tamtejsi naukowcy odkryli wyjątkowo dziwny materiał: częściowo nadprzewodnik, częściowo metal. Nowy materiał zaliczony został do nadprzewodników topologicznych.

Jego egzotyka polega na tym, że ma dwie tożsamości elektroniczne naraz: wnętrze kryształu zachowuje się jak zwyczajny nadprzewodnik zdolny do przewodzenia prądu bez pojawienia się zjawiska oporu, gdy tymczasem powierzchnia zachowuje się jak metal: przewodzić może, ale już z oporem.

Według fizyków z Princeton w miejscu, gdzie nadprzewodnik „staje” się metalem, należałoby szukać cząstek Majorany. Andrew L. Wray, jeden z autorów pracy, uważa, że ten niezwyczajny nadprzewodnik mógłby stać się swoistą „szkółką” do pozyskiwania fermionów. Ważnych z racji swego neutralnego charakteru: nie będą reagować ani ze sobą, ani z innymi cząstkami (czego nie można powiedzieć w ujemnie naładowanych elektronach, które zawsze przecież ciągnie w kierunku plusa).

Zatem ruch fermionów Majorany będzie tak przewidywalny jak droga suwaka na zamku błyskawicznym. To zaś dałoby się wykorzystać przy tworzeniu komputerów kwantowych. I to takich, które same będą wiedzieć, że przy obliczeniach popełniły błąd i same ten błąd naprawią.

Na tym kończą się pozytywne wieści. Wiadomość niezbyt dobra to taka, że na rozwinięcie opisanej tu technologii prawdopodobnie trzeba będzie poświęcić ok. 20-30 lat.

Uwaga: zdjęcie powyżej nie przedstawia struktury nowego nadprzewodnika.

Źródło: Esciencenews

Źródło artykułu:WP Gadżetomania

Wybrane dla Ciebie

Komentarze (0)
© Gadżetomania
·

Pobieranie, zwielokrotnianie, przechowywanie lub jakiekolwiek inne wykorzystywanie treści dostępnych w niniejszym serwisie - bez względu na ich charakter i sposób wyrażenia (w szczególności lecz nie wyłącznie: słowne, słowno-muzyczne, muzyczne, audiowizualne, audialne, tekstowe, graficzne i zawarte w nich dane i informacje, bazy danych i zawarte w nich dane) oraz formę (np. literackie, publicystyczne, naukowe, kartograficzne, programy komputerowe, plastyczne, fotograficzne) wymaga uprzedniej i jednoznacznej zgody Wirtualna Polska Media Spółka Akcyjna z siedzibą w Warszawie, będącej właścicielem niniejszego serwisu, bez względu na sposób ich eksploracji i wykorzystaną metodę (manualną lub zautomatyzowaną technikę, w tym z użyciem programów uczenia maszynowego lub sztucznej inteligencji). Powyższe zastrzeżenie nie dotyczy wykorzystywania jedynie w celu ułatwienia ich wyszukiwania przez wyszukiwarki internetowe oraz korzystania w ramach stosunków umownych lub dozwolonego użytku określonego przez właściwe przepisy prawa.Szczegółowa treść dotycząca niniejszego zastrzeżenia znajduje się  tutaj.